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The problem of the oscillation of an ideal liquid in 8 cavity is iuvesti- 
gated by a variational method which enables us to obtain an approxieate 
solution to any degree of accuracy for a cavity of arbitrary configura- 
tion. 

It is shown that finding a solution to the bOund8ry-Value problem of 
the free oscillations of a liquid is equivalent to determining a system 
of functions for which the variation of the Hamilton functional tkssumes 
a minimum value. 

The results obtained 8re used to determine the coefficients of the 
equations of disturbed motion for a solid body possessing a spherical 
cavity partially filled with an ideal liquid. 

S. The reduction of the boundary-value problem of the oscillations of 
a iiquid to a varlational problem We star t from the assumption that the 
m&ion of the liquid can be defined by its Enetic energy T and its 
potential energy V. 

Hamilton’s variational principle states that the functional 

tr 
J = (T-V)df 

s 
t* 

must have a stationary value. In the present case 

(f.f) 

U-2) 

Therefore equality (1.1) means that in the interval between the times 

1704 
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tl and t2 real motion must take place in such a way that the variation 
6J = 0, i.e. so that 

U-3) 

Here and in what follows I will denote the free surface, K the equa- 
tion of the free surface, p. the density of the liquid, U the potential 
of the displacements, Q the volume occupied by the liquid,_j the acceler- 
ation of the mass forces, S the wetted surface. 

Following the procedure outlined in [ll, we introduce the potential 
of the displacements U of the boundary-value problem 

au 
AU =O (withinQ), z = 0 (on S), 

a=u au 
ata-+iz =o (oa 2) (1.4) 

where v is the unit vector of the external .normal. We express the DOten- 
tial 0 in the form of an infinite series 

u (r, YI 2, t) = $ Pn (f) kn (% Y, x) 0.5) 
Vi==]. 

which within the volume Q and over a finite time interval 0 % t d tk is 
absolutely and uniformly convergent. 

We treat the functions p,(t) 88 coefficients of the expansion of If in 
a generalized Fourier series in functions 5,. which are orthogonal on the 
free surface and for which we take a normalization in the form 

% (at a point on the 
&-=I contour C) 

where C is the contour of the free surface. 

(1.6) 

The boundary-value problem (1.4) can be written in the form 

A&, = 0 (withinQ), 2 = 0 (on S), 
%I 
-& = o,16, (on X) (1.7) 

Applying Green’s formula to expression (1.3) and making use of ex- 
pansion (1.5). we make the stipulation that 

It follows from the basic priaciples of variational calculus that 
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equality (1.6) is satisfied only for functions 5, which give the func- 

tional L a minimum. 

functional L [(,I 

We will show that a function <,, for which the 

assumes a minimum, is a solution to the problem (1.7). 

Suppose that 5, gives the functional L[(,] a minimum. We assess the 

value of the functional for the function 5, + ar),,. where qn is a function 

which, together with its derivatives, is continuous within the volume Q. 

For small values of a we can take the function 5, + aq, as close to 5, 

as we like, and in addition 

From the definition of the variation 

we obtain 

sss ac 
rl,&,dQ - ss qn%ds- +-,,2~,)ds=o (I 3 

Q s 

In accordance with the basic lemma of variational calculus [21, we 

find that equations (1.7) follow from (1.9). or in other words, the eclua- 

tions of small free oscillations of an ideal liquid are Euler equations 

of the functional L. 

Thus. the process of solving the boundary-value problem (1.4) has 

been reduced to a variational problem which may be stated as follows: to 

find within a certain class of admissible functional arguments a function 

which is extremal for the functional L. 

In order to solve this variational problem we make use of the method 

of Ritz, which is based on the construction of 

such that 

L [(p@)] = minimum 

and which entails finding a complete system of 

defined within the volume Q and possessing the 

binatfons of the form 

a minimizing sequence q(k) 

functions yl, y2, . . . , 
property that linear com- 

(1.10) 

are admitted by the functional arguments, and that for E > 6, no matter 

how small, we can find a value of k such that 

1 L 15 1 - L [@)I t < E n 

Consequently, assuming that L[T ck)l is a continuous function of the 

parameters ci, to find the minimum of the functional entails determining 
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values of ci such that 

aL [q(k)] 
aci = O (i=l,...,R) (l.ll) 

We shall therefore try to find the kth approximation of the nth eigen- 

function in the form (1. lo), for which we obtain from (1. 11) the system 

of equations 

dL [ ql’“‘] 
aci = Vy.Vq’k’dQ - g2 

1 ss yqckf ds = 0 z (i=l,...,k) 
c 

which can conveniently be expressed in the form 

k 

2] (aij - G2bij ) ci = 0 

where 
i=l 

(i=l,. . . , k) (1.12) 

(1.13) 

The homogeneous system of k equations with k unknowns so obtained has 

a non-trivial solution when the determinant 

D (6) f= 1 uij - s2bij ) = 0 (i,i=1,2 ,..,, k) (1.14) 

The determinant (1.14) - an equation of the kth degree in o2 - gives 

k roots for on2 for each of which the system (1.12) has a non-zero solu- 

tion cicn), which to the accuracy of a constant, determines the function 
~ (k) (n = 1. . . . . k). In order to determine TV uniquely it is neces- 

siry to make use of the normalization (1.6) with 9 = a/2. 

On the other hand, the solution to the system of equations (1.12) is 

an approximate solution to the problem (1.7). Consequently, the values 

of the k roots of on2 found from (1.14) are none other than approxima- 

tions to the first k eigenvalues ‘f12, . . . . ok’, and the functions (pl (k) , 
. . . , qk( kf are approximations for the corresponding eigenfunctions cl, 

..*, Sk* 

2. Solution for the case of a spherical cavity. The equations of motion 

for a solid body with a cavity partially filled with an ideal liquid have 

been derived in [1,3,4] and elsewhere. 

Using the results of 111, we investigate the way in which the 

associated masses and the first frequency of natural oscillations depend 

on the depth of liquid, and on the basis of the results obtained we 

analyze the rate at which the process of successive approximations con- 

verges. In calculating the inertia coefficients of the liquid only the 

first mode of oscillations was taken into account. 
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The equations of disturbed motion for a solid body with a spherical 
csvity partially filled with liquid, when the forces exerted on the body 
by the liquid are calculated relative to the center of the sphere. are 

pn in + i4pgm + i,,;i + hang = 0, cL, = ~0: cs ‘pi ds 
k 

(n = 1, 2, 3, * . .) (2.1) 

Here ‘1 is the displacement of the body in a direction parallel to the 
Z-axis, 8 is the angle of rotation of the body about an axis parallel to 
the y-axis; p, p” are the masses of the liquid and of the solid body, 
respectively, JyY, J ’ are the moments of inertia of the liquid and of 
the solid body respe%oely, xc is the coordinate of the center of the 
sphere. 

These equations describe the motion of the system comprising the solid 
body pius the liquid about the metacenter XC, the position of which rela- 
tive to the center of gravity of the system comprising the solid body 
plus the liquid in a solidified state is given by the formula 

fiP& 
*,=xX+ 4(p+p0) 

where Rf: is the radius of the free surface. 

It can easily be shosn that for a spherical cavity the metacenter is 
at the center of the sphere. We introduce a spherical system of coordi- 

nates 

x = Rcos0, y = R sin 0 cos cp, z = R sin 0 sin p 

rith origin at the center of the sphere. The x-axis is perpendicular to 
the free surface z and lies in a direction opposite to the acceleration 
vector of the mass forces. We pass to the non-dimensional quantities 

R 
RO 

1 
h 

r=-, =--, 
RO 

+R& aij = -$ (2.2) 
a 

where R, is the radius of the sphere and h is the depth of liquid. 

The elements of the characteristic determinant now become: 

(a) for 1 < 1 
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of the Laplace equation which are harmonic within the sphere 
k 

where Pi1 (CO8 8) are associated Legendre functions of the first kind. 

The sequence of functions q(‘) is chosen in the form of (2.4) from 

the following considerations: 

(a) the first term of the ex- 
pansion gives a frequency which 
coincides with that of the equi- 
valent mathematical pendulum (the 
length of the pendulum is the dis- 
tance from the center of the 
sphere to the center of mass of 
the undisturbed liquid). For 
small relative depths the fre- 
quency of such a pendulum is 
close to the frequency of the 
first mode of the liquid; 

f.LXr-1 

(b) the second term of the 
expansion is the potential of 

Fig. 1. 

the displacements of the equivalent physical pendulum which, as will be 
shown later, for a certain range of depths can be taken as a good 
mechanical analogy for a liquid oscillating inside a sphere. 

The calculations necessary to determine the natural frequency of the 
first mode of oscillations of the liquid and of the associated masses 
were carried out on an electronic digital computer. The program was 
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arranged in such a way that the process of convergence to the exact value 

of any of the coefficients of the equations of motion continued until two 

consecutive results differed by less than 1%. 

Figures 1 and 2. which are plotted from the results of these calcula- 

tions, illustrate the rapidity of convergence of the coefficients of the 

equations of motion for two values of relative depths of liquid 1 = h/R,,. 

The numbers along the axis of abscissae denote the order of the charac- 

teristic determinant (the number of terms k taken into account in the ex- 

pansion (2.4)); along the axis of ordinates are set out values of the 

ratios of any of the coefficients, calculated from a determinant of order 

k, to the corresponding coefficient taken as exact; for example 

These figures 

teristics of the 

show that for relative depths 1 < 0.2 the inertia charac- 

liquid can be determined to an accuracy of approximately 

5% by taking only the first two terms of the expansion, 

which is sufficient for practical purposes. 

The same conclusion can be reached from a considera- 

tion of Figs. 3 to 5, which show a comparison of the re- 

sults of calculations 

based on the variational 

method (curve I) with 

those obtained by other 

Fig. 2. 
cients for an equivalent 

cylinder inscribed in 

the free surface (curve 2), for equivalent physical (curve 3) and mathe- 

mat ical (curve 4) pendulums, and also with results obtained taking only 

the first two terms of the expansion (2.4) into account (curve 5). 

A comparison is also made with the results given in [S], in which the 

solution of the boundary-value problem for a sphere is obtained by means 

of approximate integral equations (curve 6). 

Figure 6 shows the general picture of the process of convergence of 
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the first mode of natural oscfllstions. 

The relatton between h,,, crle Qlap calcnlatted to within 811 error of 

less than 146, and the relative depth 1 is plotted in Fig. 7. 

Fig, 3, Fig. 4. 

Prom the results obtained a number of cdnclus3.ons can be drawn. 

1. The equivalent pendulums are sufficiently close mechanical unalogies 

for a ZiuxIid oscillating in s sphtrra rith a reKative depth 1 < 0-f. 

Fig. 5. 
Pi& 6. 

2, T’be e~fots in determining h,,, @I* o12 associated with replacing 
the spberlcal cavity bs an et&vale& cylindrical cavftr increase with 
decrease in the relative depth, and within the range of depths 0.5 < 1 c 
0.4 give values of A,, and IQ from 10 to ‘75% too Large and values of u12 
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the same 

3. In 
accuracy 
relative 
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amount too small. 

order to determine th”e coefficients A,,, pl to a reasonable 
(to within an error of 1%) it is sufficient. in the case of small 
depths to take the first 4 or 5 terms in the expansion (2.4); 

in the case of large relative depths 7 to 9 terms are sufficient. In 
order to determine the first natural frequency to the same accuracy the 
first 3 or 4 terms should be taken in the first case and 5 or 6 in the 
second, 

4. The results of calculations obtained by the variational method co- 
incide fully with experimental results. 

Fig. 7. 

The author is indebted to Z.M. Poliakova, who was responsible for the 

programming and computing, and to S. I. Rabinovich under whose guidance 
the work was carried out. 
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